Matrixschreibweise:
A =
S[Y-T] * Y[N]....-I......0
P * Y[NN]..........0..........+Y[N]
P * b * Y[N]......-P * g.. ..+ (b * Y - g * i)
x = (dN, di, dP)
z = (0, 0, - P * Y * db)
Determinaten:
det(A)
= -I * P * b * Y[N]^2 + P * g * Y[N]^2 * S[Y-T] + (b * Y - g * i) * P * Y[NN] * I
= -I * P * b * Y[N]^2 + g * Y[N]^2 * S[Y-T] + M * Y[NN] * I
det(dN) = I * Y[N] * P * Y * db
Lösung von dN und dN/db:
dN
= det(dN) / det(A)
= I * Y[N] * P * Y * db / (-I * P * b * Y[N]^2 + P * g * Y[N]^2 * S[Y-T] + M * Y[NN] * I)
= I * Y[N] * Y * db / (-I * b * Y[N]^2 + g * Y[N]^2 * S[Y-T] + M/P * Y[NN] * I)
= I * Y[N] * Y * db / (g * Y[N]^2 * S[Y-T] + I* (M/P * Y[NN] - b * Y[N]^2)
dN/db = I * Y[N] * Y / (g * Y[N]^2 * S[Y-T] + I * (M/P * Y[NN] - b * Y[N]^2)
Liebe Grüße
Chrissi