M
Missy81
Lineare (Un-) abhängigkeit und Orthogonalität
Hallo ihr Lieben,
ich habe auch neu angefangen und bin an der l.u. / l.a. hängen geblieben.
Dazu habe ich auch zwei Fragen:
1. Ist es korrekt, dass wenn das Skalarprodukt zwischen zwei oder mehr Vektoren = 0 ist, dass dann die Vektoren orthogonal zueinander stehen und dann auch linear unabhängig sind? Damit würde ja auch der Umkehrfall gelten: Skalarprodukt ungleich = 0 -> nicht orthogonal -> linear abhängig.
Es gibt ja verschiedene Wege herauszufinden, ob Vektoren l.u. oder l.a. sind (det / Skalarprodukt / Rangbestimmun etc.) Aber kann man alle immer für alle Fälle anwenden? Mir liegen nämlich die Skalarprodukte, Determinanten und Rangbestimmungen ganz gut.
Was sagt ihr denn dazu?
2. Es gibt in KE 1 eine Aufgabe, über die immer stolpere: 2.2.6 (iv)
Dort sind zwei Vektoren (1 2) und (2 1) als Spaltenvektoren gegeben.
Es soll überprüft werden, ob diese Vektoren l.u. sind.
Wenn ich die Determinante berechne ist die ungleich 0, damit wären die Vektoren l.u..
Das Skalarprodukt ergibt aber 4 und ist damit ungleich null, was ja heißen würde, dass die Vektoren l.a. sind.
Als Ergebniss wurde l.u. angegeben.
Könnt ihr mir da weiterhelfen, wahrscheinlich habe ich irgendwo ein Verständnisproblem.
LG
Missy
Hallo ihr Lieben,
ich habe auch neu angefangen und bin an der l.u. / l.a. hängen geblieben.
Dazu habe ich auch zwei Fragen:
1. Ist es korrekt, dass wenn das Skalarprodukt zwischen zwei oder mehr Vektoren = 0 ist, dass dann die Vektoren orthogonal zueinander stehen und dann auch linear unabhängig sind? Damit würde ja auch der Umkehrfall gelten: Skalarprodukt ungleich = 0 -> nicht orthogonal -> linear abhängig.
Es gibt ja verschiedene Wege herauszufinden, ob Vektoren l.u. oder l.a. sind (det / Skalarprodukt / Rangbestimmun etc.) Aber kann man alle immer für alle Fälle anwenden? Mir liegen nämlich die Skalarprodukte, Determinanten und Rangbestimmungen ganz gut.
Was sagt ihr denn dazu?
2. Es gibt in KE 1 eine Aufgabe, über die immer stolpere: 2.2.6 (iv)
Dort sind zwei Vektoren (1 2) und (2 1) als Spaltenvektoren gegeben.
Es soll überprüft werden, ob diese Vektoren l.u. sind.
Wenn ich die Determinante berechne ist die ungleich 0, damit wären die Vektoren l.u..
Das Skalarprodukt ergibt aber 4 und ist damit ungleich null, was ja heißen würde, dass die Vektoren l.a. sind.
Als Ergebniss wurde l.u. angegeben.
Könnt ihr mir da weiterhelfen, wahrscheinlich habe ich irgendwo ein Verständnisproblem.
LG
Missy