• Guten Start ins Wintersemester 2024/2025

langfristiges Marktangebot bei Preisbildung unter vollständiger Konkurrenz

Unser Sponsor SAP 4 Students
Unser Sponsor
kann mir vielleicht jemand erklären, warum bei der langen Frist unter vollständiger Konkurrenz es mal heißt:

P = Grenzkosten und dann wieder
P = Minimum der Durchschnittskosten.

Ich habe grad ein Brett vorm Kopf und frag mich wo der Unterschied liegt?
 
Dr Franke Ghostwriter
Nadine,

bei vollständiger Konkurenz sind im langfristigen Gleichgewicht beide Bedingungen erfüllt, d.h. es gilt dann

P = Durchschnittskostenminimum und P = Grenzkosten

Grund: Die Grenzkostenkurve schneidet die Durchschnittskostenkurve stets im Minimum der Durchschnittskostenkurve (wenn dieses exisitiert).

Warum ist das so?

Sei K(X) die Kostenfunktion

Dann ist DK(X) = K(X) / X die Durchschnittskostenfunktion

Und GK(X) = K'(X) die Grenzkostenfunktion

Das Minimum der Durchschnittskosten ist:

DK'(X) = (K'(X) * X - K(X) * 1) / X^2 (Quotientenregel)

Minimum: DK'(X) = 0

... falls K'(X) * X - K(X) = 0 (Zähler von DK'(X) = 0)

... falls K'(X) = K(X) / X

Nun sind K'(X) aber die Grenzkosten GK(X) und K(X) / X die Durchschnittskosten DK(X), also:

... falls GK(X) = DK(X)

Also: Im Minimum der Durchschnittskosten sind die Durchschnittskosten identisch mit den Grenzkosten, d.h. Durchschnittskostenkurve und Grenzkostenkurve schneiden sich im Minimum der Durchschnittskostenkurve und der Marktpreis (besser Angebotspreis) sind die Kosten in diesem Schnittpunkt: P = DK(X) = GK(X).

Beispiel: K(X) = X^3 - 10 * X^2 + 27 * X

DK(X) = K(X) / X = X^2 - 10 * X + 27

DK'(X) = 2 * X - 10 = 0 falls X = 5 (DK''(X) = -10 < 0 also Minimum)

Es gilt also: P = DK(5) = 5^2 - 10 * 5 + 27 = 2

Also: Minimum der Durchschnittskosten bei X = 5 und P = 2

Es gilt aber auch für die Grenzkosten GK(X):

GK(X) = K'(X) = 3 * X^2 - 20 * X + 27

GK(5) = 3 * 5^2 - 20 * 5 + 27 = 2 (= P)

Also: Bei der Angebotsmenge (Minimum der Durchschnittskosten) entsprechen die Grenzkosten den Durchschnittskosten und damit dem Preis:

P = 2 = DK(5) = GK(5)

Liebe Grüße
 
Oben