Ich versuche gerade Grenzproduktivität und marg. Veränderung derselben bei der neoklass. Produktionsfunktion wirklich zu verstehen. Naja, ohne Erfolg... hier also meine Fragen:
Prod.funktion: Y (N, K) = c * N ^a * K ^ b
Errechnet man die Grenzproduktivität des Kapitals (Yk) bei gegeben Werten für N und K als 1. Ableitung der Funktion, die marg. Veränderung derselben als 2. Ableitung?
Was mich völlig verwirrt sind die Brüche als Hochzahlen, die umgekehrt, mit neg. Vorzeichen und als eigenständige Zahlen in der Gleichung wieder auftauchen. Wenn ich nur das Prinzip dahinter verstehen könnte, wäre die Anwendung sicher nicht schwer...
Danke für Eure Hilfe.
Prod.funktion: Y (N, K) = c * N ^a * K ^ b
Errechnet man die Grenzproduktivität des Kapitals (Yk) bei gegeben Werten für N und K als 1. Ableitung der Funktion, die marg. Veränderung derselben als 2. Ableitung?
Was mich völlig verwirrt sind die Brüche als Hochzahlen, die umgekehrt, mit neg. Vorzeichen und als eigenständige Zahlen in der Gleichung wieder auftauchen. Wenn ich nur das Prinzip dahinter verstehen könnte, wäre die Anwendung sicher nicht schwer...
Danke für Eure Hilfe.